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NUMERICAL INVESTIGATION OF TURBULENT SHALLOW 
RECIRCULATING FLOWS BY A QUASI-THREE-DIMENSIONAL 

k-6 MODEL 

C. W. LI AND T. S. W 

Department of Civil and Structural Engineering, Hong Kong Polytechnic Universi@, Hong Kong 

A quasi-three-dimensional multilayer k-c model has been developed to simulate turbulent recirculating flows 
behind a sudden expansion in shallow waters. The model accounts for the vertical variation in the flow quantities 
and e l i t e s  the problem of closure for the effective stresses resulting from the depth integration of the non- 
linear convective accelerations found in the widely used depth-integrated models. The gweming equations are 
split into three parts in the finite difference solution: advection, dispersion and propagation. The advection part is 
solved using the four-node minimax-characteristics method. The dispersion and propagation parts are treated by 
the central difference method, the former being solved explicitly and the latter implicitly using the Gauss-Seidel 
iteration method. The relative effect of bed-generated turbulence and transverse shear-generated turbulence on the 
recirculating flow has been studied in detail. In comparison with the results computed by the depth-integrated k-c 
model, the results computed by the present model are found to be closer to the reported data. 
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INTRODUCTION 

Turbulent free surface, shallow water flow problems are often encountered in hydraulic engineering. 
The flows are usually characterized by a three-dimensional varition in flow magnitude but a two- 
dimensional variation in flow directions (mainly in the horizontal directions), with the vertical 
currents small and negligible. In the presence of recirculation, such as the flow behind a sudden 
expansion in an open channel, the turbulence and hence the mean flow are strongly affected by the 
influence of bed friction and transverse shear. In modelling recirculating flow the closure 
approximation of the effective stresses is important and a sophisticated turbulence model such as 
the k-6 model‘ is required. 

Since free surface flow directions are usually two-dimensional, depth- integrated models are 
widely used in simulating this phenomenon. Rastogi and Rod? developed the first depth-integrated 
k-6 model and studied the recirculating flow generated by a side discharge into an open channel. 
Booij3 and Yu and Zhang4 presented several different versions of the k-c model. In these models the 
rigid lid assumption was employed. This assumption allows only a linear variation in the water 
surface and wave formation at the water surface will be suppressed. In contrast, Chapman and Kuo’ 
developed a depth-integrated k- c model which allows free surface variation. When simulating 
recirculating flows, these depth-integrated k-c models were found to underpredict the reattachment 
length. It is widely accepted that this is due to the inadequacy of the k-c model for turbulence. 

However, in flow simulation using depth-integrated models, the effect of the vertical variation in 
the flow quantities has not been explicitly accounted for. In particular, the problem of closure of the 
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effective stresses resulting from the depth integration of the non-linear convective accelerations has 
not been addressed, This may be part of the cause of the inaccuracy of the models. 

To improve the prediction of shallow recirculating flow, a quasi-three-dimensional multilayer k-t 
model (Mkt model) is developed in the present work. For the numerical scheme the split operator 
method is used.6 The governing equations are split into three parts in the solution: advection, 
dispersion and propagation. The advection part is solved using the four-node minimax+haracteristics 
method.’ The dispersion and propagation parts are treated by the central difference method;8 the 
former will be solved explicitly and the latter implicitly using the Gauss-Seidel iteration method. The 
relative effect of bed-generated turbulence and transverse shear-generated turbulence on the 
recirculating flow will be studied in detail. The results computed by the present model will be 
compared with those computed by the depth-integrated k- t  model (Dkt model) as well as with the 
experimental data of Babarutsi et d9 

GOVERNING EQUATIONS 

By assuming hydrostatic pressure and neglecting the vertical velocity and the effects of wind and 
Coriolis force, the three-dimensional multilayer equations of motions can be obtained by integrating 
the governing equations vertically across each layer (see e.g. Reference 10). The vertically integrated 
effective stress tensors are represented by the Boussinesq eddy viscosity expressions.’ For layer k the 
equations are as follows: x-momentum equation 

y-momentum equation 

and continuity equation 

-+r--+- atl “(2 ?)-o, - 
at 1 

(3) 

where x is the longitudinal co-ordinate direction, y is the transverse co-ordinate direction, z is the 
vertical co-ordinate direction, U ,  is the longitudinal velocity in layer k, V, is the transverse velocity in 
layer k, hk is the thickness of layer k, N is the total number of layers, v is the fiee surface elevation, H 
is the still water depth, H +  17 is the sum of the thicknesses of each layer (H + q = xy hk), vk is the 
dynamic viscosity in layer k, qh  is the longitudinal flow rate in layer k (qb= u&k) ,  q b  is the 
transverse flow rate in layer (qb= V&), t is the time and g is the acceleration due to gravity. The 
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longitudinal and transverse surface stresses z, and zsY, the longitudinal and transverse bottom stresses 
zhx and zbY and shear stresses next to the wall boundaries, zw, will be specified in the section on 
'Boundary conditions'. 

The last terms in equations (1)  and (2) are called momentum dispersion terms. These terms are due 
to the vertical non-uniformities of the mean flow quantities in every layer k. When the integrated 
model (N= 1) is used, the vertical non-uniformities of the mean fiow quantities may be large and 
cannot be neglected. However, when the water flow is cut into a sufficient number of layers, uk and 
v k  are almost Uniform in every layer k and thus the momentum dispersion terms become very smal1 
and are neglected in this study. 

EFFECTIVE STRESS CLOSURE (k-c EQUATIONS) 

The eddy viscosity vk appearing in equations (1) and (2) is given by 

where kk is the turbulence kinetic energy of layer k and Ek is the turbulence dissipation rate of layer k. 
The k-equation is 

The c-equation is 

(6) 

where C - 0.09, C,, = 1-44, C,, = 1.92, bk= 1.0 and a, = 1.3 as recommended by Launder and 
Spaldina'The four terns 

generate k and c at each layer owing to the vertical gradients of U and V, while the two terms 

difhse k and c vertically. In addition, the values of k and c generated at the bottom layer and the 
surface layer, as well as the values of k and c next to the wall boundaries, will be specified in the 
section on 'Boundary conditions'. Therefore k and E generated at every layer will be diffused 
vertically and the above equations do not need to contain the empirical source terms Ph and PCv 
appearing in the depth-integrated k-c equations (see Appendix). 
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NUMERICAL SCHEME 

In this study the split operator approach6>l2 is used in the solution. At each time step the equations are 
split into three steps-advection, diffusion, propagation and source term- follows. 

Advection step 

In the advection step a four-node minimax4haracteristics scheme proposed by Li7 is employed to 
solve the equations of pure advection. Details of the solution method for advection are given in the 
next section. 

Di#ksion step 

In the diffusion step the simple forward time, centred space scheme' is used, because the diffusion 
terms are generally small in horizontal flows. 
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Propagation and source terms step 

Equations (1 8) and (1 9) are solved explicitly and an implicit scheme is applied to solved equations 
(15H17). The three equations are decoupled through two procedures. First, the unknowns of flow 
rate at time level n + 1 are eliminated by differentiating equations ( 15) and (1 6) with respect to x and 
y .  Second, the resulting Poisson-type equation with essential boundary conditions is solved using the 
Gauss-Seidel iteration method. The finite difference expression of the resulting equation is given by 

where qii is the free surface elevation, i is the node number in the x-direction and j is the node number 
in the y-direction. 

NON-LWAR ADVECTION 

The method used to solve the non-linear advection step is described in detail in this section. 
For computational efficiency, equations (7H 10) are further split into the one-dimensional system 
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From the Lagrangian point of view these equations describe the pure advection of velocities, k and 6. 

Hence these quantities should be invariant along the characteristic lines. Consequently, the location 
of the characteristic lines can be obtained fiom 

&/dt = U;, dyldt = V,", (25) 

where 

UL = U:( 1 - U;At/b) + U:!l U:At/Ax, V: = qn(1 - ynAt/Ay) + y-1 TnAtlAy 

for Q', 
n+1/3, qIl;f1/3 , kn+1/3 and eif1l3 at 

node (z , j ,  k) are obtained by interpolation of the nodal values at known time step n. However, the 
choice of interpolation function can have a significant effect on the accuracy of the solution. From the 
consideration of both accuracy and efficiency an eficient four-node rninimax-characteristics scheme 
4NMC for advection' was employed for the solution of the equations of pure advection. The 4NMC 
scheme uses a quadratic polynomial for interpolation over four nodes (i - 2, i - 1, i and i f  1) 
subjected to a minimax criterion, which passes through &', and with the algebraic difference 
(Ad) between the polynomial and 4;-2 equal and opposite in sign to that between the polynomial and 

For linear advection problems (equations (7H10)) in which the velocity is variable in time and 

> 0 and a linear variation in velocity in space. 
After the determination of the characteristic line the values of qh 

$;+I (Figure 1). 

space, the non-conservative form of 4NMC can be written as 

@+1/3 = -0.25v(l - ~)(47-~ + c$:+~) + (1.25~ - o.25V2)4:-, + (1 - 0.75~ - 0-25v2)4:, (26) 

where v = U:At/bx is assumed to be less than unity and 4 = qh, qb, kk or 6k; then 

$+lJ3 = -0*25v(l - Y)(I$:. '~ + + (1 .25~ - O.25~~)$:_:'/~ + (1 - 0 . 7 5  - 0 . 2 5 ~ ~ ) & + ' / ~ ,  

(27) 
where v changes to v = V;At/Ay, which is also assumed to be less than unity, and thus equations (7)- 
(10) are solved. 

1-2 i-1 i 1+2 i-2 i-1 i i+2 
grid number grid number 

c$y : node's value at node i at time step n 

Ad 
andthenodevaluesot @,a & 9 

Figure 1. Illustration of 4Nh4C scheme 

: the algebraic difference b 9 - n  the plynominal 

1+1 
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BOUNDARY CONDITIONS 

The boundary conditions in the present model are specified as follows. 

Upstream and downstream boundary conditions 

In simulating the recirculating flow after a channel expansion, the location of the exit plane should 
be sufficiently far downstream of the section where the expansion exists so that the exit plane does 
not affect the separation and reattachment processes. If the computational domain is sufficiently long, 
the profiles of velocity and viscosity both upstream and downstream should become those of the fully 
developed channel flow. Thus we can apply zero-gradient conditions at both the inlet and outlet 
planes for all variables in simulating both the channel flow and the recirculating flow behind the 
expansion, except those variables which are assumed to be fixed. 

In the upstream region the vertical variation in the longitudinal velocity U is specified as a 
logarithmic profile with Manning coefficient n, the transverse velocity V is assumed to be equal to 
zero and all other dependent variables, i.e. water depth, k and L, are equal to the adjacent interior point 
values. 

In the downstream region the water depth is specified and the velocities (U and V), k and L are 
equal to the adjacent interior point values. 

Wall boundary conditions 

At solid wall boundaries a no-slip boundary condition is used and the wall function technique 
proposed by Launder and Spalding" is applied. According to this technique, the conditions are 
specified at a grid point which lies outside the laminar sublayer and the velocity at this grid point is 
given by the universal law of the wall, 

uw 1 - = - ln(EY+), 
u* Kc 

where Y+ = U,yn/v and 

Here z, is the wall friction stress, p is the ambient water density, U, is the resultant velocity along 
the solid wall boundary, U, is the resultant friction velocity, yn is the normal distance between the 
fist grid point and the wall, K, is the Von Karman constant and E is a parameter representing the wall 
roughness which is assumed equal to unity. 

In addition, assuming that the turbulence near the wall is in local equilibrium, the turbulent shear 
stress is approximately equal to the wall shear stress when the buoyancy effect is absent. Under this 
assumption, k and L at the grid points next to the wall are given byl1 

Free su~ace  boundary conditions 

At the top layer the surface stresses z, and zs,, are assumed to be zero. The zero surface stresses 
imply that the surface tension and viscous effects are small and negligible,13 which further implies 
that k and L are zero. 
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Bottom boundary conditions 

At the bottom layer the magnitudes of the bottom stresses rhr and ?by are specified by the Manning 
equation and the values of k and 6 at the grid points next to the bottom, kb and 6b, are defined by using 
the universal law of the wall: 

where 

Here n is Manning's coefficient, Z+ = U,z,/v, which is similar to Y + ,  
are the bottom friction velocities in the longitudinal and transverse directions respectively, U, is the 
resultant bottom friction velocity and z, is the normal distance between the first grid point and the 
bottom. 

SIMULATION RESULTS 

Recirculating flows behind an obstruction are common occurrences in nature. Turbulence in the 
recirculating flows is generated by the transverse shear and the bed fri~tion.~ The large-scale 
turbulence generated by the transverse shear is characterized by the length scale of expansion width 
D. The small-scale turbulence generated by the bed friction is characterized by the length scale H/Cf. 
The bed friction stresses, besides generating turbulence, will exert a stabilizing influence on the 
transverse motion and hence reduce the turbulence generated. Therefore the effect of the bed friction 
is two-edged. 

In this study, two dimensionless parameters Cf and D/H are chosen to investigate the effects of the 
turbulence generated by the bed friction and the transverse shear on the recirculating flows separately. 
The present model is employed to simulate the recirculating flows for a various values of Cf and D/H. 
The open channel to be simulated is 9.15-45.75 m wide, 0.108fk2.8080 m deep and 15.25-305 m 
long and the width of expansion is 2.2875-1 1.4375 m. The isometric view of the open channel with 
an expansion is shown in Figure 2. The inflow velocity at inlet is equal to 0-152 m s-l. The time step 
is 0.02-0-1 s. The water body is cut into 10 layers of equal thickness and the computational region 
consists of a 9 x 30 mesh upstream of the abrupt expansion and a 3 1 x 40 mesh after the expansion. 
To generate a steady region of recirculation, about 30,000 iterations and approximately 460 min of 
CPU time on a Pentium 9OPC are required. 

The reattachment length of the recirculating flows, L, is selected for comparison since it is the most 
obvious measure of the recirculating flows. The computed reattachment lengths characterized by the 
expansion width are plotted against (i) l/Cf for several values of D / H  in Figure 3 and (ii) H / D  for 
several values of Cf in Figure 4. It is observed that 

(i) the reattachment length is proportional to l/Cf for constant D/H 
(ii) the reattachment length is proportional to H / D  for constant Cf 
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Figure 2. Isometric view of open channel with expansion 

(iii) the reattachment length for any value of D / H  will converge to a value equal to about eight 

(iv) the reattachment length will converge to a smaller value as C f  becomes larger. 
times the expansion width if Cf is small enough 

Besides the above two parameters Cf and DIH, Babarutsi et al? also introduced the bed fiction 
number S= CfD/2H to measure the influence of the turbulences generated by the transverse shear 
and bottom friction. In order to test the effect of the bed fiction number S, the reattachment lengths 
computed by the present model, characterized by the expansion width, are plotted against DIH for 
various values of S in Figure 5 .  It is observed that for a constant S, (i) the reattachment length is 
approximately constant when D / H  is larger than 10 and (ii) the reattachment length will start to 
decrease with DlH when DIH is about 10. This means that for a constant S the reattachment length 
will converge to a maximum value when D / H  is large enough and the reattachment length will 
decrease with D / H  when DIH is small. In addition, the maximum converged value for a constant S 
will decrease as S increases. Thus LID may not be constant for a constant value of S. Hence S may 
not be a suitable dimensionless parameter to characterize the reattachment length of the recirculating 

m 

Figure 3. Computed LID plotted against l/C,for various values of D/H 



494 

Cf-0.01766 Cf=O.00527 0.'. 

A ................................... A - +  
.:1 ....... 

~ ......... -.e ....... 0.~ ............................................... 0 
, , .o'."- 

Q LX'. ..... Cf=0.02406 
:p' - . .  . .  ;: 
:: 

da -4 

C. W. LI AND T. S. W 

2 

- 10 

0 ............... +=i 

7 ,.. .... 

4 

I I 

S 

9 3  

2 

I I I I 1 I 1 

Figure 4. Computed LID plotted against HID for various values of Cf 

flows. To compare the results computed by the present model and the data measured by Babarutsi el 
al., the computed results and the measured data, which have the same values of Cf and D/H, are 
plotted against S in Figure 6. It is seen that the reattachment lengths predicted by the present model 
are in acceptable agreement with the measured data in the range of S < 0-02 and S > 0.1. Outside this 
range the reattachment length predicted by the present model is shorter than the measured one. This 
may be due to the inadequacy of the present model as well as the uncertainty of the experimental 
data. 

For the purpose of comparison of the MkE and Dke models the relative recirculation lengths 
computed by them are plotted against l/Cf at D / H =  7.50 in Figure 7. It is observed that 

(i) the results computed by the Mke model are larger than those computed by the Dk model when 
Cf is small 
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Figure 6. Comparison of LID computed by Mk model and measured data 

(ii) LID computed by the Mkc model tends to converge to 8-0 and LID computed by the Dkc 

(iii) the results computed by the Mkr model are approximately equal to those computed by the Dkr 
model tends to converge to a smaller value of about 6-0 

model when Cf is large. 

To investigate the causes of the difference in the results computed by the two models, two cases, 
Cf = 0.00263 (case 1) and Cf = 0.06744 (case 2) at D / H =  7.50, computed by h4kc are examined in 
detail, where case 1 represents a recirculating flow under a weak bottom friction and case 2 represents 
a recirculating flow under a strong bottom friction. To illustrate the typical flow field, the depth- 
averaged velocity distribution of the recirculating flows computed by Mkc for case 1 is shown in 
Figure 8. As marked in Figure 8, point 1 is located in the upstream region and point 2 is located in the 
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Figure 7. Comparison of LID computed by Mk and Dk models 



496 C. W. LI AND T. S. W 

Figure 8. Depth-averaged flow field computed by M k  model for case 1 

recirculating zone. The vertical profiles of velocity and viscosity at points 1 and 2 of the two cases are 
illustrated in Figures 9 and 10 respectively. 

For case 1 it is noted in Figure 9(b) that the vertical velocity profile at point 2 departs greatly from 
the typical logarithmic profile for open channel flow. In the Dk model the values of k and c in the 
water body are generated by two empirical terms Ph and P,, (see Appendix 1) which are derived 
based on the logarithmic vertical velocity profile in uniform open channel flow. Thus, for flow with a 
vertical velocity profile which differs from the logarithmic profile, these empirical terms cannot give 
an accurate estimation of the bottom-generated turbulence there. Consequently, there is a large 
deviation between the results computed by the two models in case 1. 

In case 2 the vertical velocity profiles both upstream and in the recirculation zone are relatively 
close to the logarithmic profile and thus the empirical terms in the Dk model can give an accurate 
estimation of the bottom-generated turbulence there. Consequently, the results computed by the two 
models are close in case 2. 

To demonstrate the convergence of the solutions in the horizontal directions, fine grid solutions are 
also computed for cases 1 and 2. The grid systems used in the channel expansion region for the 
simulation are 31 x 40 (the original coarse grid), 46 x 60 (medium grid) and 61 x 79 ( h e  grid). 
The computed recirculation lengths converge to within 1 per cent difference (Figure 7). In Figures 9 
and 10 the computed vertical velocity and viscosity profiles also converge at point 1 which is in the 
main channel. At point 2 which is in the recirculation zone the convergence of the solution has not 
been achieved. A difference of over 10 per cent in the computed velocities (and about 5 per cent in 
the computed viscosities) is observed. This can be explained by the slight migration of the 
recirculation eddies in the simulations using different grid systems, which induces large inaccuracy 
for point-to-point comparison. As the computational time for the fine grid solution is excessive (about 
61 h on the Pentium 90PC), carrying out the numerical simulation using an even finer grid has not 
been attempted. 

Furthermore, to demonstrate the improvement in the solution with an increasing number of layers 
(N), the solutions of the two extreme cases 1 and 2 are further computed for N=5 and 20. The 
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Figure 9. Vertical distributions of (a) viscosity and (b) longitudinal velocity U at points I and 2 for case 1 

reattachment lengths and the vertical variations in viscosity and velocity computed for N= 1 (depth- 
integrated model), 5, 10 and 20 for the two cases are presented in Table 1 and Figures 1 1 and 12. It is 
found that the reattachment lengths computed by the present model are converged for IV- 5 (Table 
1). The computed vertical profiles of longitudinal velocity converge to within 2 per cent difference 
(Figures 1 l(b) and 12@)) and a difference of about 5 per cent in the computed viscosities for N= 10 
is observed (Figures 1 l(a) and 12(a)). Therefore it is sufficient to cut the water body into 10 layers in 
this study to obtain numerically accurate solutions. 



498 

0.6 

0.4 

5 .  

0.2 

C. W. LI AND T. S. YU 

- 
C D  

* B  - 
*B 

a n - 
.L 0 

so.8[ 0.4 

P 

4 3  

a 

0.a 

n 
rl 

rl 

Figure 10. Vertical distributions of (a) viscosity and (b) longitudinal velocity U at points 1 and 2 for case 2 

CONCLUSIONS 

A quasi-three-dimensional multilayer k-6 model (Mk) which takes account of the vertical variation 
in velocities, k, 6 and viscosity has been developed and applied to calculate the turbulent recirculation 
flows behind a sudden expansion in an open channel. The relative effect of bed-generated turbulence 
and transverse shear-generated turbulence on the recirculating flow has been studied. The results 
computed by the M k  model are in closer agreement with the reported experimental data than are 
those computed by a depth-integrated k-6 model. 
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Table 1. Effects of computed reattachment length on number 
of layers (N) 

S Cf Number of layers (N) LID 

0.0098 0.00263 1. 6.1 
5 7.8 

10 7.8 
20 7.8 

0.2529 0.06744 1 2.0 
5 2.1 

10 2.1 
20 2.1 

* When N =  1, the Dkc model is used. 
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Figure 11. Illustration of convergence of computed solutions with number of layers (N) for casc 1: vertical distributions of (a) 
Viscosity and @) longitudinal velocity U at points 1 and 2 
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Figure 12. Illustration of convergence of computed solutions with number of layers (N) for case 2: vertical distributions of (a) 
viscosity and (b) longitudinal velocity U at points 1 and 2 

APPENDIX 

The k-6 equations of the depth-integrakd k-c (Dk) model' are 
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with 

P h = i 2 -  [ ($)2 + 2 -  ( a J ) 2  + ($ -+- 3 2 1  , 

u, = J[c;(v2 + P)] ,  
where U, is the bottom fiiction velocity and C; is the fiiction coefficient. The empirical constants C, 
and C, are determined from undisturbed normal channel flow as 
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